Abstract

Abstract Star spot evolution is visible evidence of the emergence/decay of the magnetic field on a stellar surface, and it is therefore important for the understanding of the underlying stellar dynamo and consequential stellar flares. In this paper, we report the temporal evolution of individual star spot areas on the hot-Jupiter-hosting, active solar-type star Kepler-17, whose transits occur every 1.5 days. The spot longitude and area evolution are estimated (1) from the stellar rotational modulations of Kepler data and (2) from the brightness enhancements during the exoplanet transits caused by existence of large star spots. As a result of the comparison, the number of spots, spot locations, and the temporal evolution derived from the rotational modulations are largely different from those of in-transit spots. We confirm that, although only two light-curve minima appear per rotation, there are clearly many spots present on the star. We find that the observed differential intensity changes are sometimes consistent with the spot pattern detected by transits, but at other times they do not match with each other. Although the temporal evolution derived from the rotational modulation differs from those of in-transit spots to a certain degree, the emergence/decay rates of in-transit spots are within an order of magnitude of those derived for sunspots as well as our previous research based only on rotational modulations. This supports the hypothesis that the emergence/decay of sunspots and extremely large star spots on solar-type stars occur through the same underlying processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.