Abstract

There remains a lack of knowledge regarding ecosystem transfer, transport processes, and mechanisms, which influence the long-term mobility of Pu-239 and Cs-137 in natural environments. Monitoring the distribution and migration of trace radioisotopes as ecosystem tracers has the potential to provide insight into the underlying mechanisms of geochemical cycles. This study investigated the distribution of anthropogenic radionuclides Pu-239 and Cs-137 along with total organic carbon, iron, and trace element in contaminated sediments of Pond B at the Savannah River Site (SRS). Pond B received reactor cooling water from 1961 to 1964, and trace amounts of Pu-239 and Cs-137 during operations. Our study collected sediment cores to determine concentrations of Pu-239, Cs-137, and major and minor elements in solid phase, pore water and an electrochemical method was used on wet cores to determine dissolved elemental concentrations. More than 50 years after deposition, Pu-239 and Cs-137 in sediments are primarily located in the upper 5 cm in area where deposition of particulate-bound contaminants was prevalent and located between 5 and 10 cm in areas of high sedimentation, showing a limited migration of Pu-239 and Cs-137. A Factor analysis demonstrated different sediment facies across the pond resulting in a range of geochemical processes controlling accumulation of Pu and Cs. Highest concentrations appear to be controlled by particulate input from the influent canal, dominated by clay, silt, and sand minerals bearing Fe. Elevated Pu-239 in the sediments were observed in areas with high organic matter and higher deposition rate relative to the Pond B system near the outlet indicating strong association of Pu with OM and particulates. Therefore, organic matter cycling likely plays a role in Pu redistribution between sediment and overlying pond water, and deposition in organic rich sediments accumulating near the outlet. Though Pu appears to have been distributed throughout the pond, Cs-137 concentrations remained the highest near the influent canal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.