Abstract

The temporal evolution of the electron cloud at room temperature has been recorded through a resonance circuit by observing the axial oscillation frequency of its center of mass. The electron cloud undergoes radial expansion by interacting with the residual gas molecules, and it is finally lost upon hitting the Penning trap electrodes. It has been confirmed through detailed experimental investigations that the unique temporal pattern of frequency variation is a consequence of the cloud's radial expansion. Consequently, this approach offers a non-destructive means for single-shot detection, enabling continuous monitoring of the electron cloud's radial expansion during the confinement time. This technique offers a significant advantage over its destructive alternatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.