Abstract

Fast ions created in the fusion processes will provide up to 70% of the heating in ITER. To optimize heating and current drive in magnetically confined plasmas insight into fast-ion dynamics is important. First measurements of such dynamics by collective Thomson scattering (CTS) were recently reported [Bindslev, Phys. Rev. Lett. 97, 205005 2006]. Here we extend the discussion of these results which were obtained at the TEXTOR tokamak. The fast ions are generated by neutral-beam injection and ion-cyclotron resonance heating. The CTS system uses 100-150kW of 110-GHz gyrotron probing radiation which scatters off the collective plasma fluctuations driven by the fast-ion motion. The technique measures the projected one-dimensional velocity distribution of confined fast ions in the scattering volume where the probe and receiver beams cross. By shifting the scattering volume a number of scattering locations and different resolved velocity components can be measured. The temporal resolution is 4ms while the spatial resolution is approximately 10cm depending on the scattering geometry. Fast-ion velocity distributions in a variety of scenarios are measured, including the evolution of the velocity distribution after turnoff of the ion heating. These results are in close agreement with numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.