Abstract

We study the temporal evolution of silicon surfaces subject to low energy Ar+-ion bombardment and concurrent sample rotation. Systematic experiments are carried out in both the linear and nonlinear regimes. It is observed that an experiment which produces an anisotropic surface without sample rotation produces a statistically isotropic surface with a smaller surface roughness if the sample is rotated at a sufficiently high angular speed. Interrupted coarsening of the nanoscale mounds on the surface at long times t is observed without concurrent deposition of metal impurities for the first time. We find that the characteristic lateral size and height of the mounds increase as t1/2 and t, respectively. Both our experiments and simulations show that azimuthally rotating ripples form at a sufficiently small rotational speeds, as predicted two decades ago. Finally, predictions from theories on rotating samples subject to ion bombardment are tested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.