Abstract

In-cylinder flow fields and their temporal evolution have strong effect on the combustion dynamics of internal combustion engines. Proper orthogonal decomposition is a statistical tool to analyze these flow fields by decomposing them into flow patterns (known as proper orthogonal decomposition modes) and corresponding coefficients with their contribution to the ensemble flow kinetic energy successively maximized. However, neither of the two prevailing proper orthogonal decomposition approaches satisfactorily describes the temporal behavior of the flow fields. The phase-dependent proper orthogonal decomposition approach is limited to analyzing spatial flow structures at a certain engine phase. The phase-invariant proper orthogonal decomposition approach attempts to account for both spatial and temporal variations, but at the expense of diminished statistical and physical significance. In this article, we seek to understand the temporal behavior of tumble flow fields by analyzing the evolution of low-order phase-dependent proper orthogonal decomposition modes over multiple crank angles. The concept of relevance index is first generalized to enable comparison between two vectorial fields of different sizes. This metric is then used to quantify the directional similarities between the two lowest proper orthogonal decomposition modes obtained at sequential crank angles. The mode shapes are observed to evolve gradually and naturally over most crank angles, but change significantly at certain crank angles during intake. The results indicate that each of the low-order modes features strong velocity fluctuations in different regions of the tumble plane, and different numbers of modes are needed to represent the dominant features of tumble flow at different engine phases. Based on this understanding, we propose to use the partial sum of those proper orthogonal decomposition modes and their coefficients to form a low-order approximation model of the in-cylinder tumble flow, in order to reduce flow field complexity and noise while retaining its major spatial and temporal features.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call