Abstract

Non-invasive, easy to use and cost-effective technology offers a valuable alternative for rapid detection of carcinogenic fungal metabolites, namely aflatoxins, in commodities. One relatively recent development in this area is the use of spectral technology. Fluorescence hyperspectral imaging, in particular, offers a potential rapid and non-invasive method for detecting the presence of aflatoxins in maize infected with the toxigenic fungus Aspergillus flavus. Earlier studies have shown that whole maize kernels contaminated with aflatoxins exhibit different spectral signatures from uncontaminated kernels based on the external fluorescence emission of the whole kernels. Here, the effect of time on the internal fluorescence spectral emissions from cross-sections of kernels infected with toxigenic and atoxigenic A. flavus, were examined in order to elucidate the interaction between the fluorescence signals emitted by some aflatoxin contaminated maize kernels and the fungal invasion resulting in the production of aflatoxins. First, the difference in internal fluorescence emissions between cross-sections of kernels incubated in toxigenic and atoxigenic inoculum was assessed. Kernels were inoculated with each strain for 5, 7, and 9 days before cross-sectioning and imaging. There were 270 kernels (540 halves) imaged, including controls. Second, in a different set of kernels (15 kernels/group; 135 total), the germ of each kernel was separated from the endosperm to determine the major areas of aflatoxin accumulation and progression over nine growth days. Kernels were inoculated with toxigenic and atoxigenic fungal strains for 5, 7, and 9 days before the endosperm and germ were separated, followed by fluorescence hyperspectral imaging and chemical aflatoxin determination. A marked difference in fluorescence intensity was shown between the toxigenic and atoxigenic strains on day nine post-inoculation, which may be a useful indicator of the location of aflatoxin contamination. This finding suggests that both, the fluorescence peak shift and intensity as well as timing, may be essential in distinguishing toxigenic and atoxigenic fungi based on spectral features. Results also reveal a possible preferential difference in the internal colonization of maize kernels between the toxigenic and atoxigenic strains of A. flavus suggesting a potential window for differentiating the strains based on fluorescence spectra at specific time points.

Highlights

  • Invasion of commodities by mycotoxin producing fungi is a common problem faced by farmers around the world predominantly in tropical and subtropical climates

  • The results indicate and confirm previous results found with intact kernels, that it is not possible to differentiate aflatoxin producing A. flavus from the nonproducing strain in maize cross-sections, on the basis of a fluorescence peak shift

  • The present study examined the internal fluorescence spectral emissions from cross-sections of kernels infected with both toxigenic and atoxigenic A. flavus in order to gain a deeper understanding of the interaction between the fluorescence signal and fungal invasion resulting in the production of aflatoxin

Read more

Summary

Introduction

Invasion of commodities by mycotoxin producing fungi is a common problem faced by farmers around the world predominantly in tropical and subtropical climates. Aflatoxins are the most carcinogenic of all the mycotoxins, adversely affecting human and animal populations through ingestion or inhalation of contaminated food and feed (Richard and Payne, 2003). Crops most commonly affected by aflatoxin contamination are oilseeds including maize, cottonseed, and tree and ground nuts. Global weather shifts expand areas susceptible to aflatoxin contamination (e.g., Africa, Asia, and North Australia), which include more temperate parts of the world (parts of Europe and United States). A timely solution is needed to curb this problem and prevent the situation from reaching critical proportions (Wu et al, 2011; Battilani et al, 2016)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.