Abstract

The temporal effects of multiphoton ionization are investigated using a two-color method which determines both the time and intensity at which the process occurs. We show that the total ionization efficiency depends strongly on the time at which an atom makes a transition to an excited state during an intense laser pulse. This result clearly shows that the ac-Stark-shifted bound-state resonances not only enhance the cross section for photoionization, but that the excited bound states provide temporary storage states for the atomic population during the photoionization process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call