Abstract
Cover crops are supposed to decrease the soil mineral N content (Nmin) during winter and increase the N supply to subsequent main crops due to mineralization of N previously prevented from leaching. However, data on N supply from cover crops grown before sugar beet have rarely been reported for Central European conditions. Therefore, our study aimed to provide information for cover crops differing in frost resistance and biomass quantity applicable for N fertilizer dressing in the subsequent main crop. In 2018/19 and 2019/20, field trials were conducted on two Luvisol sites in Germany typical for sugar beet cultivation, comprising a sequence of autumn sown cover crops grown after field pea followed by unfertilized sugar beet main crops sown in next spring. Apparent net N mineralization and the N effect of cover crops on sugar beet were calculated according to a mass balance approach including Nmin and sugar beet N uptake. Winter rye and oil radish revealed the greatest potential for scavenging nitrate from the soil profile while reductions caused by frost-sensitive saia oat and spring vetch were more variable. The amount of N in the cover crop biomass was negatively correlated with Nmin in autumn and also in spring. Thus, for environmentally effective cover cropping in Central Europe, species with a sufficiently high frost tolerance should be chosen. Despite cover crop N uptake up to 170 kg N ha−1 and C:N ratios < 20, a positive N effect on sugar beet was only found between March and July of the beet growing season and was 50 kg N ha−1 at maximum, while between August and September, net immobilization was predominant with up to 100 kg N ha−1. Differences among crop species were not consistent across the site/years investigated. Sugar yield was lowest after rye at 3 sites/years and correlated positively with Nmin in spring. Correlation between yield and cover crop N effect was mostly low and inconsistent and could not be improved by a multiple regression approach. Thus, factors other than in-season N supply from cover crops apparently impacted sugar beet yield formation to a larger extent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.