Abstract
Periodic presentation of visual stimuli leads to a robust electrophysiological response on the human scalp exactly at the periodic stimulation frequency, a response defined as a “steady-state visual evoked potential” (SSVEP, Regan, 1966). However, recent studies have shown that SSVEPs over the (right) occipito-temporal cortex are reduced when the same individual face is repeated at periodic rates of 3 to 9Hz compared to when different faces are presented (Rossion, 2014). Here, we characterized the temporal dynamics of this repetition suppression effect. We presented different face identities at a rate of 5.88Hz (stimulus onset asynchrony of 170ms) for 15s, followed by the repetition of the exact same face at this rate for 35s. Compared to a stimulation sequence with different faces only, there was a large and specific decrease of the 5.88Hz response when the same face was repeated at that rate. This effect was observed over the left and right occipito-temporal cortex, but not over medial occipital electrode sites where SSVEPs are typically measured. In the right hemisphere, this decrease occurred abruptly, i.e., within half a second following the introduction of the same-identity stimulation, with no further decrease until the end of the stimulation. These observations indicate that the SSVEP recorded over high-level visual areas to periodic stimulation is not steady but rather adapts immediately and fully following the repetition of the same individual face, supporting a bottom-up, stimulus-driven account of repetition suppression effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.