Abstract

Event-related repetitive transcranial magnetic stimulation (rTMS) can dynamically interfere with the memory encoding of complex visual scenes. Here, we investigated the critical time elapsing from stimulus presentation to the formation of an effective memory trace by delivering rTMS (900 ms at 20 Hz) during the encoding of visual scenes at different poststimulus delays (from 100 to 500 ms) in 28 healthy volunteers. The stimulation delay showed a robust inverse correlation with the correct retrieval of encoded images. In particular, rTMS stimulation delivered with a delay of 500 ms and lasting for 400 ms after stimulus offset resulted in a huge drop in retrieval accuracy. Such a timing suggests that rTMS affects the formation of long-term memory through interference with postperceptual executive processes, rather than with perceptual analysis of the stimuli. The effect was specific for stimulation of the left dorsolateral prefrontal cortex (DLPFC), whereas rTMS applied to the right DLPFC, vertex (active control site), as well as sham stimulation (placebo) did not affect accuracy. These results confirm the crucial role of the left DLPFC in encoding and provide novel information about the critical timing of its engagement in the formation, consolidation, and maintenance of the memory trace.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.