Abstract

Widely used as an antimicrobial in antibacterial bar soaps, triclocarban (3,4,4'-trichlorocarbanilide; TCC) is effective against Gram-positive bacteria but shows little efficacy against Gram-negative strains, potentially altering the composition of indigenous microflora within and on the human body. To date, the consequence of continuous or previous nonprescription antimicrobial exposure from compounds in personal care products on commensal microflora is still elusive. Previous research has shown that TCC exposure during gestation and lactation induced dysbiosis of gut microbial communities among exposed dams and neonates. However, the impact of antimicrobial exposure specifically after discontinuation of the use of TCC on the gut microbiota has not been investigated. In this study, weaned Sprague Dawley rats (postnatal day, PND 22) were provided ad lib access to TCC-supplemented diet (0.2% w/w or 0.5% w/w) for 4weeks (phase I) followed by a 4-week washout period (phase II) to determine gut microflora changes both during continuous exposure to TCC and to determine the potential rebound following TCC withdrawal. Fecal samples were collected at baseline (PND 22) prior to TCC exposure and throughout phase I and phase II. The V4 region of 16S rDNA was sequenced from extracted total fecal DNA with the MiSeq platform. Exposure to both 0.2% w/w and 0.5% w/w TCC was sufficient to alter diversity of microbiota during phase I of treatment. This effect was further prolonged into phase II, even when TCC exposure was discontinued. Collectively, these data highlight the impact of both continuous and prior TCC exposure on gut microbial ecology and shed light onto the potential long-term health risk of daily nonprescription antimicrobial personal care product use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call