Abstract
Acute stress has been associated with activation of glutamate efflux in forebrain structures. The present study sought to characterize the extracellular dynamics of glutamate in response to acute and repeated stress in the prefrontal cortex and hippocampus in rats. One-minute sampling of extracellular glutamate levels was performed during repeated tail-pinch stress. Animals were stressed three times, beginning at approximately 10.30 a.m. and continuing at 2.5-h intervals. In the prefrontal cortex, the initial 10-min tail pinch produced a robust increase in extracellular levels of glutamate. This increase was apparent immediately (i.e. 1 min) after the start of the stress procedure. The second tail pinch produced a smaller increase in glutamate levels while the third tail pinch did not significantly increase these levels. In the hippocampus, the initial stress response was smaller in magnitude than that observed in the prefrontal cortex. Furthermore, responses to subsequent tail pinches were similar to that seen following the first tail pinch. Treatment with diazepam (3 mg/kg i.p.) 30 min before the first stress session abolished the stress response in the prefrontal cortex and hippocampus. However, in the prefrontal cortex, the second tail pinch (performed approximately 3 h after diazepam administration) produced a robust increase in glutamate efflux. In contrast, in the hippocampus of diazepam-treated rats, the second tail pinch produced a small delayed response. Pretreatment with saline resulted in non-significant responses to all three tail pinches in the prefrontal cortex. The present study suggests that: (i) stress produces a rapid increase in glutamate efflux in the prefrontal cortex and hippocampus, (ii) repeated stress reveals tolerance in the glutamatergic response in the prefrontal cortex, (iii) saline and diazepam pretreatment block the stress-induced efflux of glutamate in the prefrontal cortex, and (iv) exposure to diazepam may prevent the prefrontal cortex from adapting its response to the subsequent stressor. These finding are consistent with the role of the prefrontal cortex as a region which may regulate reactions to aversive stimuli.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.