Abstract

A dynamic neural network change, accompanied by cognitive shifts such as internal perceptual alternation in bistable stimuli, is reconciled by the discharge of noradrenergic locus coeruleus neurons. Transient pupil dilation as a consequence of the reconciliation with the neural network in bistable perception has been reported to precede the reported perceptual alternation. Here, we found that baseline pupil size, an index of temporal fluctuation of arousal level over a longer range of timescales than that for the transient pupil changes, relates to the frequency of perceptual alternation in auditory bistability. Baseline pupil size was defined as the mean pupil diameter over a period of 1 s prior to the task requirement (i.e., before the observation period for counting the perceptual alternations in Experiment 1 and reporting whether participants experienced the perceptual alternations in Experiment 2). The results showed that the baseline pupil size monotonically increased with an increasing number of perceptual alternations and its occurrence probability. Furthermore, a cross‐correlation analysis indicates that baseline pupil size predicted perceptual alternation at least 35 s before the behavioral response and that the overall correspondence between pupil size and perceptual alternation was maintained over a sustained time window of 45 s at minimum. The overall results suggest that variability of baseline pupil size reflects the stochastic dynamics of arousal fluctuation in the brain related to bistable perception.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call