Abstract

The advance of information technologies provides powerful measures to digitize social interactions and facilitate quantitative investigations. To explore large-scale indoor interactions of a social population, we analyze 18 715 users' Wi-Fi access logs recorded in a Chinese university campus during 3 months, and define event interaction (EI) to characterize the concurrent interactions of multiple users inferred by their geographic coincidences-co-locating in the same small region at the same time. We propose three rules to construct a transmission graph, which depicts the topological and temporal features of event interactions. The vertex dynamics of transmission graph tells that the active durations of EIs fall into the truncated power-law distributions, which is independent on the number of involved individuals. The edge dynamics of transmission graph reports that the transmission durations present a truncated power-law pattern independent on the daily and weekly periodicities. Besides, in the aggregated transmission graph, low-degree vertices previously neglected in the aggregated static networks may participate in the large-degree EIs, which is verified by three data sets covering different sizes of social populations with various rendezvouses. This work highlights the temporal significance of event interactions in cyber-social populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call