Abstract

Gas and particulate phase ambient air concentrations of polycyclic aromatic hydrocarbons (Ʃ16PAHs) were determined in Strasbourg, a large city located in the Alsace region of northeastern France, from May 2018 to March 2020, to study the evolution of their temporal variations and their potential origins. The analysis of PAHs was performed using a global analytical method permitting the quantification of pesticides, PAHs, and polychlorobiphenyls (PCBs). Filters and Carbon doped silicon carbide NMC@SiC foams were extracted by accelerated solvent extraction (ASE) followed by a solid-phase extraction (SPE). Afterwards, extracts were analyzed using gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). Prior to analysis, a pre-concentration step based on solid-phase microextraction (SPME) was used with a polydimethylsiloxane (PDMS) 100 µm fiber. The average total (gas plus particulate) concentration of Ʃ16PAHs varied from 0.51 to 117.31 ng m−3 with a mean of 16.87 ng m−3, with higher concentrations in the cold season of more than 2.5-fold and 6-fold that in the warm season for the gas and particulate phases, respectively. Moreover, low molecular weight (LMW) (2-ring and 3-ring) and medium molecular weight (MMW) (4-ring) PAHs contribute dominantly to the gas phase, while the particulate phase is associated with MMW (4-ring) and high molecular weight (HMW) (5-ring and 6-ring) PAHs. Gas/particle partitioning coefficient (log Kp) was calculated, and values varied between −4.13 and −1.49. It can be seen that the log Kp increased with the molecular weight of the PAHs and that the log Kp is different between cold and warm seasons for HMW PAHs but not for LMW PAHs. Diagnostic ratios of PAHs, which were employed to estimate the primary source of PAHs in Strasbourg, indicate that fuel combustion and biomass/coal burning are the possible origins of PAHs in Strasbourg’s atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.