Abstract

IntroductionElevated temporal discrimination thresholds (TDT) have been found in cervical dystonia (CD) and unaffected first-degree relatives, indicating autosomal dominant inheritance with reduced penetrance, serving as an endophenotype and being indicative of abnormal inhibitory processing within the brainstem-basal ganglia circuits. The blink reflex R2 recovery cycle (BRRC) is also a measure of excitability of brainstem-basal ganglia circuits, and inconsistent findings are reported in CD. The aim was to investigate TDT and BRRC in CD and evaluate its reliability as an endophenotype. Methods29 patients with isolated cervical dystonia (mean age: 56.1 ± 14.3, female n = 18) and 29 age- and gender-matched healthy controls (mean age: 56.0 ± 14.2, female n = 18) were evaluated using a TDT-paradigm, performed as previously described by testing visual, tactile and visual-tactile temporal discrimination thresholds, and the BRRC, investigated with electrical and air puff stimulation. ResultsMean visual-tactile (p = 0.001) and visual TDTs (p = 0.015) differed between CD and controls; tactile TDTs revealed no group differences (p = 0.232). No between group differences were found for BRRC using either electrical or air puff stimulation (p = 0.117). There was no correlation between the elevation of TDTs and the degree of BRRC-inhibition in CD. ConclusionOur findings support the hypothesis that the TDT is an endophenotype in CD. BRRC testing did not demonstrate disinhibition of brainstem-basal ganglia circuits in CD. In contrast to TDT, the BRRC seems not to represent an endophenotype in cervical dystonia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call