Abstract

Because the potential impacts of emissions and extractions can be sensitive to timing, the temporal aggregation of life cycle inventory (LCI) data has often been cited as a limitation in life cycle assessment (LCA). Until now, examples of temporal emission and extraction distributions were restricted to the foreground processes of product systems. The objective of this paper is to evaluate the relevance of considering the temporal distribution of the background system inventory. The paper focuses on the global warming impact category for which so-called dynamic characterization factors (CFs) were developed and uses the ecoinvent v2.2 database as both an example database to which temporal information can be added and a source of product systems to test the relevance of adding temporal information to the background system. Temporal information was added to the elementary and intermediate exchanges of 22 % of the unit processes in the database. Using the enhanced structure path analysis (ESPA) method to generate temporally differentiated LCIs in conjunction with time-dependent global warming characterization factors, potential impacts were calculated for all 4,034 product systems in the ecoinvent database. Each time, the results were calculated for (1) systems in which temporal information was only added to the first two tiers, representing studies in which only the foreground system is temporally differentiated, and (2) systems in which temporal information was also added to the background system. For 8.6 % of the database product systems, adding temporal differentiation to background unit processes affected the global warming impact scores by more than 10 %. For most of the affected product systems, considering temporal information in the background unit processes decreased the global warming impact scores. The sectors that show most sensitivity to the temporal differentiation of background unit processes are associated with wood and biofuel sectors. Even though the addition of temporal information to unit processes in LCI databases would not benefit every LCA study, the enhancement can be relevant. It allows for a more accurate global warming impact assessment, especially for LCAs in which products of biomass are present in substantial amounts. Relevance for other impact categories could be discussed in further work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call