Abstract

A Ca(2+)-activated Cl(-) current constitutes a large part of the transduction current in olfactory sensory neurons. The binding of odorants to olfactory receptors in the cilia produces an increase in cAMP concentration; Ca(2+) enters into the cilia through CNG channels and activates a Cl(-) current. In intact mouse olfactory sensory neurons little is known about the kinetics of the Ca(2+)-activated Cl(-) current. Here, we directly activated CNG channels by flash photolysis of caged cAMP or 8-Br-cAMP and measured the current response with the whole cell voltage-clamp technique in mouse neurons. We measured multiphasic currents in the rising phase of the response at -50 mV. The current rising phase became monophasic in the absence of extracellular Ca(2+), at +50 mV, or when most of the intracellular Cl(-) was replaced by gluconate to shift the equilibrium potential for Cl(-) to -50 mV. These results show that the second phase of the current in mouse intact neurons is attributed to a Cl(-) current activated by Ca(2+), similarly to previous results on isolated frog cilia. The percentage of the total saturating current carried by Cl(-) was estimated in two ways: 1) by measuring the maximum secondary current and 2) by blocking the Cl(-) channel with niflumic acid. We estimated that in the presence of 1 mM extracellular Ca(2+) and in symmetrical Cl(-) concentrations the Cl(-) component can constitute up to 90% of the total current response. These data show how to unravel the CNG and Ca(2+)-activated Cl(-) component of the current rising phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.