Abstract

The healing process consists of at least three phases: inflammatory, repair, and remodeling phase. Because callus stiffness correlates with the healing phases, it is suitable for evaluating the fracture healing process. Our aim was to develop a method which allows determination of callus stiffness in vivo, the healing time and the duration of the repair phase. The right femurs of 16 Wistar rats were osteotomized and stabilized with either more rigid or more flexible external fixation. Fixator deformation was measured using strain gauges during gait analysis. The strains were recalculated as the callus stiffness over the time course of healing, and the healing phases were identified based on stiffness thresholds. Our hypothesis was that stabilization with more flexible external fixation prolongs the repair phase, therefore resulting in an extended healing time. Confirming our hypothesis, the duration of the repair phase (rigid: approximately 15 days, flexible: approximately 41 days) and the healing time (rigid: approximately 27 days, flexible: approximately 62 days) were significantly longer for more flexible external fixation. Our method allows the quantitative detection of differences in the healing time and duration of the repair phase without multiple time-point sacrifices, which reduces the number of animals in experimental studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call