Abstract

With the development of the economy, the number of private cars has increased, and traffic congestion is becoming increasingly common. In order to prevent traffic congestion, short-term prediction of traffic flow is urgent. This article is based on the data of a Hangzhou elevated bridge from October 4th to 18th, 2015, with a timestamp of 5 minutes and a total of over 4000 pieces of data, to have the Long Short-Term Memory (LSTM) model to be trained and the following days traffic flow to be predicted. The outcomes show that the model has high predictive capability and can reliably forecast future short-term transportation passenger flow, accurately reflecting the trend of data changes. Compared with the Auto-Regressive Moving Average (ARIMA) method with a Mean-Square Error (MSE) of 36, the LSTM model has a MSE of 22, which indicates a smaller MSE, indicating a more accurate prediction performance of LSTM. The LSTM models prediction is beneficial for alleviating traffic congestion, providing great convenience for peoples daily travel, and greatly reducing their travel time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.