Abstract

We present a theory for Fano interference in light scattering by individual obstacle, based on a temporal coupled-mode formalism. This theory is applicable for obstacles that are much smaller than the incident wavelength, or for systems with two-dimensional cylindrical or three-dimensional spherical symmetry. We show that for each angle momentum channel, the Fano interference effect can be modeled by a simple temporal coupled-mode equation, which provides a line shape formula for scattering and absorption cross-section. We validate the analysis with numerical simulations. As an application of the theory, we design a structure that exhibits strong absorption and weak scattering properties at the same frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.