Abstract

We report on theoretical and experimental investigations of time-resolved cross- and auto-correlation measurements of spectrally narrowband photon pairs generated in sources based on parametric down conversion in resonant waveguide structures. We show that time-resolved measurements provide detailed and useful information about the spectral and modal structure of the bi-photon state. The shape of the cross-correlation function is asymmetric with exponential decays determined by the lifetimes of the signal and idler photons in the cavity. The time-resolved auto-correlation has Lorentzian shape. The measured value convoluted with the detector windows and mode beating can be used to characterise the spectral longitudinal mode behaviour. The temporal width of the auto-correlation function is more than two times longer that the cross-correlation time. This reveals that the spectral bandwidth of the single-photon component is much broader than the spectral width of the two-photon component.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.