Abstract
Airway hyperresponsiveness, airway inflammation, and reversible airway obstruction are physiological hallmarks of asthma. These responses are increasingly being studied in murine models of antigen exposure and challenge, using whole body plethysmography to noninvasively assess airway hyperresponsiveness. This approach infrequently has been correlated with indexes of airway hyperresponsiveness measured by invasive means. Furthermore, correlation with quantitative histological data for tissue infiltration by inflammatory and immune cells, particularly in the wall of airways, during daily airway challenge is lacking. To address these uncertainties, we used C57BL/6 mice that were immunized with ovalbumin or vehicle (saline) and sensitized to aerosolized ovalbumin or vehicle 8 days later. The mice were subsequently exposed to aerosolized ovalbumin or vehicle, respectively, on days 14-22. We assessed airway hyperresponsiveness to methacholine noninvasively on days 14, 15, 18, or 22; we studied the same mice 24 h later while they were anesthetized for invasive analyses of airway hyperresponsiveness. Plasma total IgE concentration was significantly higher in the ovalbumin-treated mice compared with the vehicle-treated mice, but this did not correlate with eosinophil number. Peak airway hyperresponsiveness measured by either approach correlated early during daily antigen challenge (days 14 and 15), but this correlation was lost later during subsequent daily antigen challenges (days 18 and 22). On days 14 and 15, peak airway hyperresponsiveness correlated with transmigration of neutrophils and macrophages, but not lymphocytes, in the peribronchovascular connective tissue sheaths. This extravascular accumulation was found to be focal by three-dimensional microscopy. We conclude that, although ovalbumin treatment changed lung function in mice, correlation between noninvasive and invasive measures of peak airway hyperresponsiveness was inconsistent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of physiology. Lung cellular and molecular physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.