Abstract
This study introduces a novel application of a temporal convolutional network (TCN) for projecting carbon tax prices, addressing the critical need for accurate forecasting in climate policy. Utilizing data from the World Carbon Pricing Database, we demonstrate that the TCN significantly outperformed traditional time series models in capturing the complex dynamics of carbon pricing. Our model achieved a 31.4% improvement in mean absolute error over ARIMA baselines, with an MAE of 2.43 compared to 3.54 for ARIMA. The TCN model also showed superior performance across different time horizons, demonstrating a 30.0% lower MAE for 1-year projections, and enhanced adaptability to policy changes, with only a 39.8% increase in prediction error after major shifts, compared to ARIMA’s 95.6%. These results underscore the potential of deep learning for enhancing the precision of carbon price projections, thereby supporting more informed and effective climate policy decisions. Our findings have significant implications for policymakers and stakeholders in the realm of carbon pricing and climate change mitigation strategies, offering a powerful tool for navigating the complex landscape of environmental economics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.