Abstract
Many data-driven models normally assume that the training and test data are independent and identically distributed to predict the remaining useful life (RUL) of industrial machines. However, different failure models caused by variable failure behaviors may lead to a domain shift. Meanwhile, conventional methods lack comprehensive attention to temporal information, resulting in a limitation. To handle the aforementioned challenges, a transferable cross-domain approach for RUL estimation is proposed. The hidden features are extracted adaptively by a temporal convolution network in which residual self-attention is able to fully consider the contextual degradation information. Furthermore, a new cross-domain adaption architecture with the contrastive loss and multi-kernel maximum mean discrepancy is designed to learn the domain invariant features. The effectiveness and superiority of the proposed method are proved by the case study on IEEE PHM challenge 2012 bearing dataset and the comparison with other methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.