Abstract
An inverse-electron-demand Diels-Alder (IEDDA) reaction using genetically encoded tetrazine variants enables rapid bioconjugation for diverse applications in vitro and in cellulo. However, in vivo bioconjugation using genetically encoded tetrazine variants is challenging, because the IEDDA coupling reaction competes with rapid elimination of reaction partners in vivo. Here, we tested the hypothesis that a genetically encoded phenylalanine analogue containing a hydrogen-substituted tetrazine (frTet) would increase the IEDDA reaction rate, thereby allowing for successful bioconjugation in vivo. We found that the in vitro IEDDA reaction rate of superfolder green fluorescent protein (sfGFP) containing frTet (sfGFP-frTet) was 12-fold greater than that of sfGFP containing methyl-substituted tetrazine (sfGFP-Tet_v2.0). Additionally, sfGFP variants encapsulated with chitosan-modified, pluronic-based nanocarriers were delivered into nude mice or tumor-bearing mice for in vivo imaging. The in vivo-delivered sfGFP-frTet exhibited almost complete fluorescence recovery upon addition of trans-cyclooctene via the IEDDA reaction within 2 h, whereas sfGFP-Tet_v2.0 did not show substantial fluorescence recovery. These results demonstrated that the genetically encoded frTet allows an almost complete IEDDA reaction in vivo upon addition of trans-cyclooctene, enabling temporal control of in vivo bioconjugation in a very high yield.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.