Abstract

In this study, the self-diffraction (SD) process proved to be a competitive method to achieve a seed pulse with high temporal contrast in ultra-intense lasers. Several different nonlinear, transparent Kerr media including BK7 glasses, AL2O3 and CVD diamonds were compared experimentally to obtain SD signals with high energy and high conversion efficiency. AL2O3, with a high third-order nonlinear coefficient and high laser damage threshold, was found to be the best medium to improve the conversion efficiency of SD signals. The highest first-order SD signal of 401.7 μJ was achieved, with the conversion efficiency at approximately 9.1%, when the incident pulse energy was 4.40 mJ. The temporal contrast of the obtained first-order SD signal was improved by 7 orders of magnitude to 1012. As a result, this cleaning pulse will facilitate research involving ultra-intense laser systems and high-intensity laser–matter interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.