Abstract

Environmental fluctuations have been proposed to enhance the coexistence of competing phenotypes. Evaluations are here presented on the effects of prey density and short‐term temporal clumping of prey availability on the relative foraging success of unequal interferers in social forager groups of juvenile brown trout Salmo trutta feeding on drifting invertebrate prey (frozen chironomids). Groups of three trout with established linear dominance hierarchies (dominant, intermediate and subordinate) were subjected to three different total numbers of prey, combined with three different levels of temporal clumping of prey arrival, resulting in nine treatment combinations. Higher total number of prey increased the consumption for all dominance ranks, while higher temporal clumping decreased the consumption for the dominant individuals and increased the consumption for the subordinate individuals. The proportion of prey eaten was smaller at high prey numbers. Similarly, there was a trend that increased temporal clumping also decreased the proportion of prey eaten. We conclude that density and temporal clumping of prey contribute to the coexistence of unequal interferers, and that there is a potential positive feedback between prey behaviour and phenotypic coexistence through decreased per capita predation risk for prey that drift synchronously in high densities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call