Abstract

The BeiDou Global Navigation Satellite System (BDS-3) provides real-time precise point positioning (PPP) service via B2b signals, offering real-time decimeter-level positioning for users in China and surrounding areas. However, common interruptions and outliers in PPP-B2b services arise due to factors such as the Geostationary Orbit (GEO) satellite “south wall effect”, Issue of Data (IOD) matching errors, and PPP-B2b signal broadcast priorities, posing challenges to continuous high-precision positioning. This study meticulously examines the completeness, continuity, and jumps in PPP-B2b orbit and clock correction using extensive observational data. Based on this analysis, a two-step method for detecting outliers in PPP-B2b orbit and clock corrections is devised, leveraging epoch differences and median absolute deviation. Subsequently, distinct prediction methods are developed for BDS-3 and GPS orbit and clock corrections. Results from simulated and real-time dynamic positioning experiments indicate that predicted corrections can maintain the same accuracy as normal correction values for up to 10 min and sustain decimeter-level positioning accuracy within 30 min. The adoption of predicted correction values significantly enhances the duration of sustaining real-time PPP during signal interruptions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.