Abstract

The strong demand of autonomous driving in the industry has led to vigorous interest in 3D object detection and resulted in many excellent 3D object detection algorithms. However, the vast majority of algorithms only model single-frame data, ignoring the temporal clue in video sequence. In this work, we propose a new transformer, called Temporal-Channel Transformer (TCTR), to model the temporal-channel domain and spatial-wise relationships for video object detecting from Lidar data. As the special design of this transformer, the information encoded in the encoder is different from that in the decoder. The encoder encodes temporal-channel information of multiple frames while the decoder decodes the spatial-wise information for the current frame in a voxel-wise manner. Specifically, the temporal-channel encoder of the transformer is designed to encode the information of different channels and frames by utilizing the correlation among features from different channels and frames. On the other hand, the spatial decoder of the transformer decodes the information for each location of the current frame. Before conducting the object detection with detection head, a gate mechanism is further deployed for re-calibrating the features of current frame, which filters out the object-irrelevant information by repetitively refining the representation of target frame along with the up-sampling process. Experimental results reveal that TCTR achieves the state-of-the-art performance in grid voxel-based 3D object detection on the nuScenes benchmark.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call