Abstract

Fault seal due to juxtaposition or the generation of low-permeability fault rock has the potential to change through time with displacement accumulation. Temporal variations in cross-fault flow of hydrocarbons have been assessed for the Cape Egmont Fault (CEF), Taranaki Basin New Zealand, using displacement backstripping, juxtaposition and Shale Gouge Ratio (SGR) analysis. The timing of hydrocarbon migration and charge of the giant Maui Gas-condensate Field across the CEF have been assessed using seismic reflection lines (2D & 3D), coherency cubes, VShale curves from the Maui-2 well and PetroMod modelling. Displacement–backstripping analysis suggests that between the Late Miocene and early Pleistocene (5.5 and 2.1 Ma) sandstone reservoir units of the Maui Field (Mangahewa, Kaimiro and Farewell Formations) and underlying source rocks (Rakopi Formation) were partly juxtaposed across the CEF with low SGRs (< 0.2) present in the fault zone. Following 2.1 Ma SGRs increased to 0.2–0.55 adjacent to the Eocene–Palaeocene reservoir succession which was not in juxtaposed contact with source rocks. PetroMod modelling using these SGR values and juxtaposition relationships supports cross-fault flow prior to 2.1 Ma with later charge across the fault being less likely. Gas chimneys and the gas–water contact in the Eocene reservoir proximal to the fault suggest that despite limited cross-fault flow, upward leakage of hydrocarbons from the reservoir occurred after 2.1 Ma, possibly associated with active fault movement or fracturing related to faulting, and may account for the loss of an early oil phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.