Abstract

Understanding the effect of the aging process on the properties of pyrogenic carbon (PyC) is critical for predicting and evaluating its transport and fate. Water exposure is a common application scenario of PyC entering aquatic systems or flooded paddy fields, which might significantly affect the aging process. However, only some studies focused on the changes in PyC properties by water exposure treatment. In this study, the effect of water exposure on the mobility of PyC was investigated. Fresh PyC, PyC with 1.5 years and 3.5 years of water exposure were selected and named as CK, 1.5WA, and 3.5WA, respectively. Our results revealed that CK had the lowest intensity of surface functional groups (-OH, CO, and C–O–C) and the intensity of 3.5WA was higher than that of 1.5WA. There was no significant change in dissolved organic matter (DOM) content between fresh and aged PyC colloids. However, UV absorbance and its parameters (E2/E3, E4/E6, and SR) exhibited a comparable tendency to the abundance of functional groups (-OH, CO, and C–O–C). The fresh and aged PyC colloids showed high stability in Na+ and Ca2+ solutions at varying pH values (A/A0 > 85%), which was also observed in groundwater. The mobility of fresh and aged PyC colloids differed in Na+ (21.74%–57.19%), Ca2+ (14.30%–40.12%) solutions and groundwater (28.50%–44.24%), but exhibited similar order (3.5WA > 1.5WA > CK). The mechanism of the effect of water exposure on the property and mobility of PyC colloids was explored. This study provides the fundamental information to estimate PyC fate and transport after long-term water exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call