Abstract

AbstractIn order to study the seasonal and inter-seasonal variations in radio-wave velocity (RWV), radiophysical investigations were made at Hansbreen, a polythermal glacier in Spitsbergen, in July– August 2003 and April 2004. These investigations included repeated radar profiling (20 and 25 MHz) along a transverse profile, repeated common-midpoint measurements, continuous radar measurements during 8 days at a fixed site, meteorological observations, and continuous ice surface velocity monitoring by differential GPS. Seasonal and inter-seasonal RWV changes in the temperate ice layer are attributed, respectively, to rapid water redistribution within it during the summer, and to variations in water content from 2.1% in summer to 0.4% in spring. The reflection properties of the temperate ice layer correlate well with the air temperature, with a nearly semi-diurnal time lag. The temporal variability of the reflection properties of the internal horizon suggests enlargement of water inclusions or water drainage from the horizon. Repeated profiling shows a stable spatial pattern in bed reflection power interpreted as changes in water content controlled by bedrock topography. The spatial variations of internal reflection energy along the repeated profile correlate with the thickness of the cold ice layer and the occurrence of drainage and crevasse systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.