Abstract

BackgroundIn northern Papua New Guinea (PNG), most Plasmodium falciparum isolates proved resistant to chloroquine (CQ) in vitro between 2005 and 2007, and there was near-fixation of pfcrt K76T, pfdhfr C59R/S108N and pfmdr1 N86Y. To determine whether the subsequent introduction of artemisinin combination therapy (ACT) and reduced CQ-sulphadoxine-pyrimethamine pressure had attenuated parasite drug susceptibility and resistance-associated mutations, these parameters were re-assessed between 2011 and 2013.MethodsA validated fluorescence-based assay was used to assess growth inhibition of 52 P. falciparum isolates from children in a clinical trial in Madang Province. Responses to CQ, lumefantrine, piperaquine, naphthoquine, pyronaridine, artesunate, dihydroartemisinin, artemether were assessed. Molecular resistance markers were detected using a multiplex PCR ligase detection reaction fluorescent microsphere assay.ResultsCQ resistance (in vitro concentration required for 50% parasite growth inhibition (IC50) >100 nM) was present in 19% of isolates. All piperaquine and naphthoquine IC50s were <100 nM and those for lumefantrine, pyronaridine and the artemisinin derivatives were in low nM ranges. Factor analysis of IC50s showed three groupings (lumefantrine; CQ, piperaquine, naphthoquine; pyronaridine, dihydroartemisinin, artemether, artesunate). Most isolates (96%) were monoclonal pfcrt K76T (SVMNT) mutants and most (86%) contained pfmdr1 N86Y (YYSND). No wild-type pfdhfr was found but most isolates contained wild-type (SAKAA) pfdhps. Compared with 2005–2007, the geometric mean (95% CI) CQ IC50 was lower (87 (71–107) vs 167 (141–197) nM) and there had been no change in the prevalence of pfcrt K76T or pfmdr1 mutations. There were fewer isolates of the pfdhps (SAKAA) wild-type (60 vs 100%) and pfdhfr mutations persisted.ConclusionsReflecting less drug pressure, in vitro CQ sensitivity appears to be improving in Madang Province despite continued near-fixation of pfcrt K76T and pfmdr1 mutations. Temporal changes in IC50s for other anti-malarial drugs were inconsistent but susceptibility was preserved. Retention or increases in pfdhfr and pfdhps mutations reflect continued use of sulphadoxine-pyrimethamine in the study area including through paediatric intermittent preventive treatment. The susceptibility of local isolates to lumefantrine may be unrelated to those of other ACT partner drugs.Trial registrationAustralian New Zealand Clinical Trials Registry ACTRN12610000913077.

Highlights

  • In northern Papua New Guinea (PNG), most Plasmodium falciparum isolates proved resistant to chloroquine (CQ) in vitro between 2005 and 2007, and there was near-fixation of pfcrt K76T, pfdhfr C59R/S108N and pfmdr1 N86Y

  • Together with efficacy data from a large-scale, multiarm, treatment trial conducted in coastal PNG from 2005 to 2007 [4] and World Health Organization management guidelines at the time [5], artemisinin combination therapy (ACT) was introduced nationally as recommended therapy for uncomplicated malaria in 2010 [6]

  • The methodology used, a modified version of that first described by Smilkstein et al [11], has been previously validated against tritium hypoxanthine incorporation, Pf lactate dehydrogenase (PfLDH), light microscopic schizont maturation, and flow cytometry-based drug susceptibility assays using the laboratory-adapted parasite strains 3D7, E8B and W2 [16]

Read more

Summary

Introduction

In northern Papua New Guinea (PNG), most Plasmodium falciparum isolates proved resistant to chloroquine (CQ) in vitro between 2005 and 2007, and there was near-fixation of pfcrt K76T, pfdhfr C59R/S108N and pfmdr N86Y. Resistance of Plasmodium falciparum to anti-malarial drugs in Papua New Guinea (PNG) began with chloroquine (CQ) in the 1970s [1] and has since extended to amodiaquine [2] and sulphadoxine-pyrimethamine (SP) [3]. Because of this trend, together with efficacy data from a large-scale, multiarm, treatment trial conducted in coastal PNG from 2005 to 2007 [4] and World Health Organization management guidelines at the time [5], artemisinin combination therapy (ACT) was introduced nationally as recommended therapy for uncomplicated malaria in 2010 [6]. Additional insight into mechanisms of resistance is provided by detection of single nucleotide polymorphisms in parasite genes determining drug response [12], including mutations in the P. falciparum CQ transporter (pfcrt), multidrug resistance 1 (pfmdr1), dihydrofolate reductase (pfdhfr), and dihydropteroate synthetase (pfdhps) genes

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.