Abstract
When diatoms undergo vegetative cell division the new siliceous wall components are slightly smaller than those of the parent because they are produced within the confines of the parent wall. Thus, with continued growth the mean size of cells in a population declines. Given this unique feature of diatom cell division, if the growth of a species in a lake increases (decreases) under more (less) favorable conditions, then the mean size of the resulting population will decline (increase). Numerous paleolimnological investigations rely on shifts in the relative abundances of diatom species over time to infer lake conditions. Although relative abundance data yield information about the dominance of species in the community, they do not necessarily provide evidence about growth of a given species. For instance, a species could have increased in growth, but simply to a lesser extent than other taxa, resulting in a decline in relative abundance. In a similar fashion, relative abundance values can be misleading when used to infer environmental change, such as trophic status change in lakes. We propose that including data on mean size of diatom valves can yield greater insight into changes in growth and improve observations and conclusions based on relative abundance data. To test this concept, we examined changes in the mean diameter of Aulacoseira ambigua (Grunow) Simonsen valves relative to known shifts in lake trophic status in a core from Bantam Lake, Connecticut, representing ~ 130 years of sediment accumulation. The mean valve diameter of A. ambigua declined from 9.7 to 7.6 µm, with the largest declines clearly tracking significant increases in trophic status. We conclude that changes in the mean size of diatom frustules over time can provide valuable information for understanding long-term environmental changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.