Abstract

Mechanisms underlying shock-induced conditioned fear - a paradigm frequently used to model posttraumatic stress disorder, PTSD - are usually studied shortly after shocks. Some of the brain regions relevant to conditioned fear were activated in all the c-Fos studies published so far, but the overlap between the activated regions was small across studies. We hypothesized that discrepant findings were due to dynamic neural changes that followed shocks, and a more consistent picture would emerge if consequences were studied after a longer interval. Therefore, we exposed rats to a single session of footshocks and studied their behavioral and neural responses one and 28 days later. The neuronal activation marker c-Fos was studied in 24 brain regions relevant for conditioned fear, e.g. in subdivisions of the prefrontal cortex, hippocampus, amygdala, hypothalamic defensive system, brainstem monoaminergic nuclei and periaqueductal gray. The intensity of conditioned fear (as shown by the duration of contextual freezing) was similar at the two time-points, but the associated neuronal changes were qualitatively different. Surprisingly, however, Multiple Regression Analyses suggested that conditioned fear-induced changes in neuronal activation patterns predicted the duration of freezing with high accuracy at both time points. We suggest that exposure to electric shocks is followed by a period of plasticity where the mechanisms that sustain conditioned fear undergo qualitative changes. Neuronal changes observed 28 days but not 1 day after shocks were consistent with those observed in human studies performed in PTSD patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.