Abstract

The Src family kinases are a family of intracellular, non-receptor tyrosine kinases that are involved in a variety of cellular functions including the regulation of inflammation and apoptosis after brain hypoxia. Caspase-1 (C1) activates IL-1β through the formation of complex structures, the inflammasomes, while caspase-8 (C8) is part of the extrinsic apoptotic pathway. C8 has been found to directly activate the production of IL-1β. Previously, we observed that C1 and IL-1β are increased in the acute phase after hypoxia in the brain of piglets, but they follow a different pattern long term, with C1 remaining activated throughout the period of observation, while IL-1β returning to baseline at 15 days. Src kinase inhibition ameliorated the activation of C1 and IL-1β early, but did not appear to have any effect long term. Prompted by these findings, we assessed the changes that occur over time (1 h and 15 days) in C1 and C8 activities after brain hypoxia as well as the effect of pretreatment with a Src kinase inhibitor, PP2 on these biochemical markers. Enzymatic activities were determined by spectrophotometry with measurements of C1 and C8 in each cytosolic brain sample (N = 4 in each group). We found that C1 and C8 activities increase in the acute phase following hypoxia in the brain of newborn piglets, with C8 relatively more than C1 (C8/C1 ratio increased from 2:1 as baseline to 3:1 in hypoxia). Fifteen days after hypoxia C8/C1 ratio decreased to about 1:1. In piglets that were pretreated with a Src kinase selective inhibitor (PP2) and then subjected to hypoxia, the C8/C1 ratio early increase was not observed. Immediately after hypoxia C8 and C1 follow a similar pattern of increase while long term this appears to dissociate. We propose that following this experimental methodology, the previously observed IL-1β production after hypoxia might be associated with C8 rather than C1 and that Src kinase is involved in the above process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.