Abstract
IntroductionVariability in task output is a ubiquitous characteristic that results from non-continuous motor neuron firing during muscular force generation. However, variability can also be attributed to errors in control and coordination of the motor neurons themselves in diseases such as cerebral palsy (CP). Selective dorsal rhizotomy (SDR), a neurosurgical approach to sever sensory nerve roots, is thought to decrease redundant or excessive afferent signalling to intramedullary neurons. In addition to its demonstrated ability to reduce muscular spasticity, we hypothesised that SDR is able to decrease variability during gait, the most frequent functional motor activity of daily living.MethodsTwelve CP children (aged 6.1±1.3yrs), who underwent SDR and performed gait analysis pre- and 12 months postoperatively, were compared to a control group of eleven typically developing (TD) children. Coefficients of variability as well as mean values were analysed for: temporal variables of gait, spatial parameters and velocity.ResultsGait parameters of cadence (p = 0.006) and foot progression angle at mid-stance (p = 0.041) changed significantly from pre- to post-SDR. The variability of every temporal parameter was significantly reduced after SDR (p = 0.003–0.049), while it remained generally unchanged for the spatial parameters. Only a small change in gait velocity was observed, but variability in cadence was significantly reduced after SDR (p = 0.015). Almost all parameters changed with a tendency towards normal, but differences between TD and CP children remained in all parameters.DiscussionThe results confirm that SDR improves functional gait performance in children with CP. However, almost exclusively, parameters of temporal variability were significantly improved, leading to the conjecture that temporal variability and spatial variability may be governed independently by the motor cortex. As a result, temporal parameters of task performance may be more vulnerable to disruption, but also more responsive to treatment success of interventions such as SDR.
Highlights
Variability in task output is a ubiquitous characteristic that results from non-continuous motor neuron firing during muscular force generation
The variability of every temporal parameter was significantly reduced after Selective dorsal rhizotomy (SDR) (p = 0.003–0.049), while it remained generally unchanged for the spatial parameters
Almost all parameters changed with a tendency towards normal, but differences between typically developing (TD) and cerebral palsy (CP) children remained in all parameters
Summary
Variability in task output is a ubiquitous characteristic that results from non-continuous motor neuron firing during muscular force generation. Selective dorsal rhizotomy (SDR), a neurosurgical approach to sever sensory nerve roots, is thought to decrease redundant or excessive afferent signalling to intramedullary neurons. In addition to its demonstrated ability to reduce muscular spasticity, we hypothesised that SDR is able to decrease variability during gait, the most frequent functional motor activity of daily living. The exact mechanisms behind its success remain hidden, it has been a common assumption that SDR reduces muscular spasticity by eliminating redundant or excessive afferent signalling, thereby leading to more balanced central processing. Additional benefits are thought to include an enhancement of motor function [7,8,9] and even gait performance [10,11], and can help lead to improved participation in social life and peer group activities [12,13]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.