Abstract

We propose a new method to analyze the temporal brittleness of task networks, which allows the detection and enumeration of activities that, with modest task execution duration variation make the execution of the task network dynamically uncontrollable. In this method, we introduce a metric for measuring an activity brittleness – defined as the degree of acceptable deviation of its nominal duration – and describe how that measurement is mapped to task network structure. Complementary to existing work on plan robustness analysis which informs how likely a task network is to succeed or not, the proposed analysis and metric go deeper to pinpoint the sources of potential brittleness due to temporal constraints and to focus either human designers and/or automated task network generators (e.g. scheduler/planners) to address sources of undesirable brittleness. We apply the approach to a set of task networks (called sol types) in development for NASA’s next planetary rover and present common patterns that are sources of brittleness. These techniques are currently under evaluation for potential use supporting operations of the Mars 2020 rover.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.