Abstract

Cleavage of the O-glycosyl bonds of Saccharomyces cerevisiae cell wall mannoproteins by β-elimination resulted in the release of about 8% of the carbohydrate in the form of mannose and other low molecular weight oligomannosaccharides (mannose to mannopentaose), leaving 92% mannose still covalently linked to the peptide, and suggesting that this alkali-resistant fraction was N-glycosidically linked. At the non-permissive temperature, S. cerevisiae sec mutants accumulated in the cytoplasm mannoproteins with different degrees of O- and N-glycosylation. The glycoproteins of mutant sec 20-1 contained 60% of the carbohydrate linked by N-bonds, the remainder being O-glycosidically linked. Strains sec 19-1 and sec 1-1 contained 80 and 87%, respectively, of the mannose as N-linked carbohydrates. In addition, when the non-permissive conditions were prolonged over 2 h, strain sec 20-1 completed the formation of the O-linked oligosaccharides, suggesting that it is the kinetics of the process that determines the final composition of the mannoproteins. Our results suggest that the glycosylation of yeast cell wall mannoproteins is probably initiated in the lumen of the endoplasmic reticulum where the O-linked oligosaccharides may be completed. Maturation of the N-linked oligosaccharides, on the other hand, probably occurs during transport of the nascent mannoproteins to the cell surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.