Abstract
Previous studies demonstrated that maintenance of steady-state myogenic tone requires Ca<sup>2+</sup>-dependent myosin phosphorylation. The present studies furthered these observations by examining temporal relationships among Ca<sup>2+</sup>, myosin phosphorylation and vessel diameter during acute increases in intraluminal pressure and norepinephrine stimulation. Rat cremaster muscle arterioles were cannulated and loaded with the Ca<sup>2+</sup>-sensitive indicator fura-2. The extent of myosin phosphorylation was measured using two-dimensional gel electrophoresis. Acute increases in intraluminal pressure caused a biphasic increase in intracellular Ca<sup>2+</sup> ([Ca<sup>2+</sup>]<sub>i</sub>), characterized by a transient peak followed by a decline to a steady-state level which remained significantly higher than control values. Peak [Ca<sup>2+</sup>]<sub>i</sub> was significantly related to vessel distension and increased with the change in wall tension. Increased intraluminal pressure resulted in a monophasic increase in myosin phosphorylation that was significantly correlated with instantaneous wall tension. In general, norepinephrine induced larger [Ca<sup>2+</sup>]<sub>i</sub> transients and a biphasic myosin phosphorylation pattern. The results demonstrate: (a) major roles for Ca<sup>2+</sup> and myosin phosphorylation in arteriolar myogenic and norepinephrine-induced responses; (b) that changes in Ca<sup>2+</sup> and phosphorylation during a myogenic response are related to changes in wall tension, and (c) differences in Ca<sup>2+</sup> and phosphorylation patterns between the two modes of contraction reflect possible differences in underlying signaling mechanisms. The data further emphasize that spontaneous arteriolar tone represents a state of maintained smooth muscle activation that requires increases in [Ca<sup>2+</sup>]<sub>i</sub> and myosin light-chain phosphorylation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.