Abstract

A mobile X-band (~9.535GHz) dual-polarization Doppler weather radar system was operated at a tropical site Pune (18.5386°N, 73.8089°E, 582m AMSL) by the Indian Institute of Tropical Meteorology, Pune, India for observing monsoon clouds. The measurement site was on the leeward (eastern) side of the Western Ghats (WG). This study focuses on the horizontal and vertical structure of monsoon precipitating clouds and its temporal evolution as observed by the X-band radar on August 27, 2011. The radar reflectivity factor (Z, dBZ) is used as a proxy for measure of intensity of cloud system. Result shows that the radar reflectivity has a strong temporal variation in the vertical, with a local peak occurring in the afternoon hours. Relatively shallow structure during the late night and early morning hours is noticed. The observed cloud tops were reached up to 8km heights with reflectivity maxima of about 35dBZ at ∼5km. The spatial and vertical evolution of radar reflectivity is consistent with the large-scale monsoon circulation. The variations in the outgoing longwave radiation (OLR) from the Kalpana-1 satellite and vertical velocity and cloud-mixing ratio from the Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis data are also analyzed. As direct observations of clouds using radars are sparse over the Indian region, the results presented here would be useful to understand the processes related to cloud and precipitation formation in the tropical environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.