Abstract

We study the timing and spectral properties of the X-ray pulsar 2S 1553–542 using the NuSTAR and NICER during the outburst in January–February 2021. During the outburst, the spin period of the neutron star was $$P\sim 9.2822$$ s based on NuSTAR data. The pulse profiles are studied using different NICER observations, which implies that the profile is more or less sinusoidal with a single peak and the beaming patterns are dominated mainly by the pencil beam. The NICER spectra of the source are studied for different days of the outburst. They can be well described by a model consisting of a blackbody emission, power law and photoelectric absorption component. The variation of spectral parameters with luminosity is studied over the outburst. The photon index shows anti-correlation with luminosity below the critical luminosity, which implies that the source was accreting in the sub-critical accretion regime during the NICER observations. We also report the anti-correlation between pulsed fraction (PF) and luminosity of the 2S 1553–542 using NICER observations. The evolution of spin-up rate with luminosity is studied during the outburst, which implies that both are strongly correlated. The torque-luminosity model is applied to estimate the magnetic field at different spin-up rates. The magnetic field is estimated to be $${\simeq }2.56 \times 10^{12}$$ G from the torque-luminosity model using the source distance of 20 kpc. The magnetic field is also estimated using the critical luminosity, consistent with our findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call