Abstract
Marine ecosystems are facing numerous environmental challenges due to global climate change. In response to these challenges, the establishment and growth of marine ranching has emerged as a pivotal solution. Chlorophyll a concentration (Chla) is recognized as a valuable indicator for the ecological assessment of marine ranching. This study focused on the spatiotemporal distribution of Chla and its response to environmental factors according to the dataset in the marine ranching area of Haizhou Bay (Lianyungang, Jiangsu, China) from 2003 to 2022. The results showed that Chla had a significant cycle of summer > spring > autumn and was distributed evenly in the central area of the marine ranching. During interannual changes, Chla patches were centered in the central region during 2014, 2015, and 2016. The Chla patches predominantly focused on the eastern area in 2018–2019, shifting to the western area in 2020–2021. The generalized additive model (GAM) indicated that salinity, depth, temperature, biological oxygen demand (BOD5) and SiO3−–Si were the main environmental factors affecting Chla during spring, summer and autumn. However, during El Niño events, salinity, depth, temperature, BOD5 and transparency became the main environmental factors. We concluded that salinity, depth and temperature consistently played a crucial role in determining Chla under various climate conditions, and SiO3−–Si and transparency will no longer be an environmental factor limiting Chla. In addition, The effect of interannual variability on upwelling and vertical mixing of water layers may potentially alter the spatial distribution pattern of Chla. These findings can offer ideas into predicting the variation of Chla in marine ranching under global interannual events in the future. Furthermore, this can contribute to the comprehensive assessment of ecological benefits and the in-depth construction of marine ranching. Ultimately, it can provide essential data and scientific references for offshore ecological environment assessment and ecosystem restoration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.