Abstract

Owing to the significant impact of heavy metals in atmospheric deposition on soil, clear knowledge on the present situation and temporal and spatial variation in fluxes of heavy metals in atmospheric deposition all around China is urgently needed. In this study, we collected 99 published papers on deposition fluxes of heavy metals from 2001 to 2021 based on the CNKI and Web of Science database and extracted 718 to 1672 monitoring points from these papers. The Meta-analysis method was used to calculate the weighted average of deposition fluxes of heavy metals, and the spatial-temporal characteristics in different periods from 2000 to 2018 were studied by subgroup analysis, which compared the differences between different types of areas, such as agricultural and rural areas and urban and industrial areas. The results showed that the annual fluxes of heavy metals in atmospheric deposition[mg·(m2·a)-1] in China were as follows:Zn (96.75)>Pb (23.37)>Cu (12.77)>Cr (11.04)>Ni (6.61)>As (2.97)>Cd (0.48)>Hg (0.05). Overall, the estimated value of deposition fluxes in China from 2000 to 2018 was higher than that of rural areas in England from 1995 to 1998. The deposition fluxes in industrial areas and urban areas were much higher than those in the agricultural and rural areas, especially the industrial areas where the heavy metal pollution was more serious. The deposition fluxes of As and Cd in the Changsha-Zhuzhou-Xiangtan area were relatively high, whereas the atmospheric deposition of heavy metals in Northeast China, the Pearl River Delta, and North China Plain was more serious than that in the other areas. In the past 20 years, the annual deposition fluxes of Cd fluctuated around the overall average, without an obviously declining trend, whereas the deposition fluxes of Cd in the urban, agricultural, and rural areas showed a trend of growth. These results suggested that precise and risk control measures of atmospheric emissions should be established based on the characteristics of regional industrial structure, which should cover all levels, all types, and all regions. In addition, more restrictive measures should be taken to solve the current problem caused by the higher deposition flux of Cd in atmospheric deposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.