Abstract

The spatial and temporal variability of dryness conditions in the territory of Kazakhstan during the period 1979–2021 was investigated using monthly and hourly ERA5 reanalysis data on air temperature and precipitation as well as various aridity indices. A large part of the territory is characterized by the air temperature increase in summer and spring, as well as precipitation reduction, especially during the summer months. It was shown that the end of the 20th century (1979–2000) and the beginning of the 21st century (2001–2021) are characterized by different trends in air temperature and precipitation. All applied indices, i.e., the Palmer Drought Severity Index (PDSI), the Keetch–Byram Drought Index (KBDI), Standardized Precipitation (SPI) and Standardized Precipitation Evapotranspiration (SPEI), showed increased dryness in most parts of the territory of Kazakhstan. KBDI indicated an increased risk of wildfires, especially in the southwestern and northwestern regions. The hottest and driest areas are situated in the regions that are simultaneously affected by rising temperatures and reduced precipitation in spring and summer. The strongest increase in aridity and fire risk in the southwest and northwest is mainly due to reduced precipitation in the summer. Minimal risks of droughts occur in the northern and central regions, where conditions in the early 21st century became even less favorable for drought formation compared to the late 20th century (increased precipitation in both spring and summer and lower summer temperatures).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call