Abstract
Conversion of native ecosystems to agro-ecosystems influences the amount, quality and turnover of soil organic carbon (SOC). As most agro-ecosystems are not in a steady state in terms of the content of SOC, the time scale and feedback mechanisms of changes in SOC are highly relevant for predicting future soil fertility and potential rates of soil carbon losses or sequestration. This paper focuses on changes in land use linked to measured changes in the distribution of total stocks of SOC and the δ13C signature in the upper 0.5 m of cultivated soils in the semi-arid parts of Tanzania. Based on documented land use changes since 1950s using remote sensing data, 12 sampling sites along two transects were selected to represent semi-natural/natural savannah and maize fields cultivated for up to five decades. Comparisons between sites representing a chronosequence of well-drained soils showed that soils cultivated the last 50 years have in average less than 50% SOC compared to soils which have never been cultivated. Variations between sites were significant and a reduction in SOC could not be established at sites near present or former villages which have received substantial manure despite a long cultivation history or along a chronosequence representing wetter and more fine-grained soils. Spatial variations in land use changes were parameterized based on remote sensing data and successfully validated against sampling sites. Site-specific rates of soil element loss following cultivation were extrapolated to the study area and uncertainties related to scaling up were discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.