Abstract
AbstractTaylor's law is a widely observed empirical pattern that relates the variances to the means of population densities. We present four extensions of the classical Taylor's law (TL): (1) a cubic extension of the linear TL describes the mean–variance relationship of human mortality at subnational levels well; (2) in a time series, long-run variance measures not only variance but also autocovariance, and it is a more suitable measure than variance alone to capture temporal/spatial correlation; (3) an extension of the classical equally weighted spatial variance takes account of synchrony and proximity; (4) robust linear regression estimators of TL parameters reduce vulnerability to outliers. Applying the proposed methods to age-specific Japanese subnational death rates from 1975 to 2018, we study temporal and spatial variations, compare different coefficient estimators, and interpret the implications. We apply a clustering algorithm to the estimated TL coefficients and find that cluster memberships are strongly related to prefectural gross domestic product. The time series of spatial TL coefficients has a decreasing trend that confirms the narrowing gap between rural and urban mortality in Japan.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series A: Statistics in Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.