Abstract

The present article contains the description of simple experiments mounted for a demonstration of temporal and spatial structures of dissipative nonlinear dynamical systems. The systematic approach possible to systems with few degrees of freedom is described on an elementary level showing experiments on a rotating nonlinear oscillator. The temporal structure elements are those contained in the stationary, periodic, quasi-periodic, and chaotic motion. Structures of systems with many degrees of freedom are demonstrated by showing experiments on real spatially extended electronic circuits and gas discharge systems both described by reaction diffusion equations. Such systems have a complexity and richness of structures far beyond what can be described systematically by current techniques. However, for special cases a quantitative understanding is possible. Also filaments of rather well defined size and shape observed in our experiments can be considered as simple elements building up a variety of spatial patterns. We also show that noise is decisive in many cases for the formation and the nonreproducibility of stationary structures. Finally, we stress some features common to reaction diffusion systems and living beings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call